DISTRICT LEVEL II PUC PREPARATORY EXAM, MARCH - 2022 Max. Marks: 100 Time: 3 Hrs. 15 Mins. Max. Marks: 100 Sub: MATHEMATICS (35)

General Instructions:

- The question paper has Five parts, namely A, B, C, D and E. Answer all the parts.
 Part A carries 10 marks, namely A, B, C, D and E. Answer all the parts. Part – A carries 10 marks, Part – B carries 20 marks, Part – C carries 30 Marks, Part – D carries 30 marks and Part – E marks and Part – E carries 10 marks.
- Write the corresponding question number properly as indicated in the question paper.
 Use the graph short for the sho Use the graph sheet for the questions on LPP in Part – E.

PART - A

 $10 \times 1 = 10$

- i. Answer any TEN of the following questions: 1. A relation R on $A = \{1, 2, 3\}$ defined by $R = \{(1, 1)(1, 2)(3, 3)\}$ is not symmetric. Why?
 - Define a binary operation.
 - 3. Write the domain of $f(\mathbf{x}) = \sin^{-1} x$.
 - 4. Find the value of $\cos\left[\sec^{-1}x + \cos ec^{-1}x\right]$, $|x| \ge 1$.
 - 5. Define scalar matrix.
 - 6. Find the value of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$.

7. If
$$y = \cos(1-x)$$
 find $\frac{dy}{dx}$.

8. If
$$y = \tan(2x+3)$$
 find $\frac{dy}{dx}$

- 9. Find $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$.
- 10. Find $\int \cos ec x (\cos ec x + \cot x) dx$.
- 11. Find the unit vector in the direction of vector $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} + \hat{k}$.
- 12. Define negative of a vector.
- 13. Write the direction cosines of y-axis.
- 14. Define feasible region of a linear programming problem.
- 15. Find P(A/B); if P(B) = 0.5 and $P(A \cap B) = 0.32$.

PART - B

II. Answer any TEN of the following questions:

 $10 \times 2 = 20$

16. If $f : R \to R$ defined by $f(x) = 1 + x^2$ then show that f is neither one-one nor onto.

17. Find the value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$.

- 18. Write the simplest form of $\tan^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right]$.
- 19. Find the values of x, y and z from the equation $\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}.$

20. Find area of the triangle whose vertices are (-2, -3), (3, 2) and (-1, -8) by using determinant. 21. If $y + \sin y = \cos x$ find $\frac{dy}{dx}$.

22. Differentiate $(\sin x)^x$ with respect to x.

23. If $x = at^2$, y = 2at find $\frac{dy}{dx}$.

24. Find the slope of tangent to the curve $y = \frac{x-1}{x-2}$ at x = 10.

25. Evaluate $\int \sin x \cdot \sin(\cos x) dx$

26. Find
$$\int \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} dx$$

- 27. Evaluate $\int_{2}^{3} \frac{x}{x^2+1} dx$.
- 28. Find the order and degree of the differential equation $y''' + y^2 + e^{y'} = 0$.
- 29. If \vec{a} is a unit vector such that $(\vec{x} \vec{a})$. $(\vec{x} + \vec{a}) = 8$ find $|\vec{x}|$.
- 30. Find the area of parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$
- 31. Find the angle between pairs of lines

$$\vec{r} = 2\hat{\imath} - 5\hat{\jmath} + \hat{k} + \lambda(3\hat{\imath} + 2\hat{\jmath} + 6\hat{k})$$
 and $\vec{r} = 7\hat{\imath} - 6\hat{k} + \mu(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$

32. Find the distance of the point (-6, 0, 0) from the plane 2x - 3y + 6z = 0.

33. A random variable X has the following probability distribution:

X	0	1	2	3	4
P(X)	0.1	K	2K	2K	Κ
Determine K.					

PART - C

III. Answer any TEN of the following questions:

- 34. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b)/|a b| is even\}$ is an equivalence relation.
- 35. Prove that $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$.
- 36. Express $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as sum of symmetric and skew-symmetric matrices.

37. Verify that if any two rows of a determinant are interchanged then the sign of determinant

changes by considering
$$\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$
.

38. If $y^x = x^y$ then find $\frac{dy}{dx}$.

39. If
$$x = a\left[\frac{dy}{dx} + \sin t\right]$$
 and $y = a\left[1 - \cos t\right]$ prove that $\frac{dy}{dx} = \tan\left(\frac{dy}{2}\right)$.

40. Verify mean value theorem if $f(x) = x^3 - 5x^2 - 3x \forall x \in [1,3]$

 $10 \times 3 = 30$

- 41. Find the intervals in which the f is given by $f(x) = x^2 4x + 6$ is (a) Strictly increasing (b) strictly decreasing.
- 42. Find $\int e^x \left[\frac{1 + \sin x}{1 + \cos x} \right] dx$.
- 43. Evaluate $\int \frac{x}{(x-1)(x-2)} dx$.
- 44. Evaluate $\int e^{t} dt$ as the limit of a sum.
- 45. Find the area of the region bounded by the curve, $y = x^2$ and the line y = 4.
- 46. Form the differential equation of the family of curves $y = ae^{3x} + be^{-2x}$ by eliminating arbitrary constants a and b.
- 47. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.
- 48. Prove that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$
- 49. Show that the position vector of the point P which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio m:n is $\frac{m\vec{b}+n\vec{a}}{m+n}$.
- 50. Find the shortest distance between the lines whose vector equations are $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k}).$
- 51. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

IV. Answer any SIX of the following questions:

- 52. Let the function $f: R \to R$ where R is the set of real number defined by f(x) = 3 4x. Is f oneone and onto? Justify your answer.
- 53. Let $f: N \to R$ be a function defined by $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$ where S is the range of f is invertible. Find the inverse of f.

54. If $A = \begin{bmatrix} 0 & 6 & 7 \\ 6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix} B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, calculate AC, BC and (A+B)C and also verify that (A + B)C = AC + BC

- 55. Solve the system of linear equations by using matrix method: 2x + 3y + 3z = 5, x - 2y + z = -4 and 3x - y - 2z = 3
- 56. If $y = 3\cos(\log x) + 4\sin(\log x)$ show that $x^2y_2 + xy_1 + y = 0$.
- 57. If length x of a rectangle is decreasing at the rate of 3cm/minute and the width y is increasing at the rate of 2 cm/minute. When x = 10cm and y = 6cm, find the rates of change of (a) the perimeter and (b) the area of the rectangle.

P.T.O.

6 × 5 = 30

- 58. Find the integral of $\int \frac{1}{\sqrt{x^2 a^2}}$ with respect to x and hence evaluate $\int \frac{1}{\sqrt{4x^2 a}} dx$
- 59. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using integration.
- 59. Find the area enclosed by the differential equation $\frac{dy}{dx} + y \sec x = \tan x, \ 0 \le x \le \frac{\pi}{2}$ 60. Find the general solution of the differential form both in the vector and $0 \le x \le \frac{\pi}{2}$
- 61. Derive the equation of a plane in normal form both in the vector and Cartesian form.
- 61. Derive the equation of a probability of 62. A die is thrown 6 times. If getting an odd number is success what is the probability of (a) 5 success (b) at least 5 success (c) atmost 5 success.
- 63. Probability of solving a specific problem independently than find the probability that $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If Probability of solving a specific problem independently then find the probability that $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently the problem. solved (b) Exactly one of them solves the problem.

PART - E

 $1 \times 10 = 10$

V. Answer any ONE of the following questions:

- graphically. problem following Maximize Solve the following product to the constraints: $x + y \le 50$, $2x + y \le 80$, $x \ge 0$, [6M] 64. (a) Solve
 - (b) Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 4A + I = 0$, when I is 2 × 2 identity matrix and 0 is 2 × 2 zero matrix. Using this equation, find A^{-1} . [4M]

65. (a) Prove that
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
 and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}}dx$. [6M]

(b) Find K. If
$$f(x) = \begin{cases} \frac{K \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$. [4M]

- (a) A water tank has the shape of an inverted right circular cone with its axis vertical and 66. vertex lowermost. Its semi-vertical angle is $\tan^{-1}(0.5)$. Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4m. [6M]
 - (b) By using properties of determinants show that

$$\begin{vmatrix} x + y + 2z & x & y \\ z & y + z + 2x & y \\ z & x & z + x + 2y \end{vmatrix} = 2(x + y + z)^{3}$$
[4M]

0000000

Page 4