DISTRICT LEVEL II PUC PREPARATORY EXAM, MARCH - 2022 Time: 3 Hrs. 15 Mins. Sub: MATHEMATICS (35)

General Instructions:

1. The question paper has Five parts, namely A, B, C, D and E. Answer all the parts.
2. Part - A carries 10 marks, Part - B carries 20 marks, Part - C carries 30 Marks, Part - D carries 30 marks and Part-E carries 10 marks.
3. Write the corresponding question number properly as indicated in the question paper.
4. Use the graph sheet for the questions on LPP in Part - E.

PART - A

$10 \times 1=10$

1. Answer any TEN of the following questions:
2. A relation R on $A=\{1,2,3\}$ defined by $R=\{(1,1)(1,2)(3,3)\}$ is not symmetric. Why?
3. Define a binary operation.
4. Write the domain of $f(x)=\sin ^{-1} x$.
5. Find the value of $\cos \left[\sec ^{-1} x+\operatorname{cosec}^{-1} x\right],|x| \geq 1$.
6. Define scalar matrix.
7. Find the value of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$.
8. If $y=\cos (1-x)$ find $\frac{d y}{d x}$.
9. If $y=\tan (2 x+3)$ find $\frac{d y}{d x}$.
10. Find $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$.
11. Find $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) d x$.
12. Find the unit vector in the direction of vector $\vec{a}=2 \hat{\imath}+3 \hat{j}+\hat{k}$.
13. Define negative of a vector.
14. Write the direction cosines of y-axis.
15. Define feasible region of a linear programming problem.
16. Find $P(A / B)$; if $P(B)=0.5$ and $P(A \cap B)=0.32$.
```
PART - B
```

II. Answer any TEN of the following questions:
16. If $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$ then show that f is neither one-one nor onto.
17. Find the value of $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$.
18. Write the simplest form of $\tan ^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right]$.
19. Find the values of x, y and z from the equation $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$.
20. Find area of the triangle whose vertices are $(-2,-3),(3,2)$ and $(-1,-8)$ by using determinant.
21. If $y+\sin y=\cos x$ find $\frac{d y}{d x}$.
22. Differentiate $(\sin x)^{x}$ with respect to x.
23. If $x=a t^{2}, y=2 a t$ find $\frac{d y}{d x}$.
24. Find the slope of tangent to the curve $y=\frac{x-1}{x-2}$ at $x=10$.
25. Evaluate $\int \sin x \cdot \sin (\cos x) d x$
26. Find $\int \frac{\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$.
27. Evaluate $\int_{2}^{3} \frac{x}{x^{2}+1} d x$.
28. Find the order and degree of the differential equation $y^{\prime \prime \prime}+y^{2}+e^{y^{\prime}}=0$.
29. If \vec{a} is a unit vector such that $(\vec{x}-\vec{a}) .(\vec{x}+\vec{a})=8$ find $|\vec{x}|$.
30. Find the area of parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{\imath}+\hat{\jmath}+4 \hat{k}$ and $\vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$
31. Find the angle between pairs of lines
$\vec{r}=2 \hat{\imath}-5 \hat{\jmath}+\hat{k}+\lambda(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})$ and $\vec{r}=7 \hat{\imath}-6 \hat{k}+\mu(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
32. Find the distance of the point $(-6,0,0)$ from the plane $2 x-3 y+6 z=0$.
33. A random variable X has the following probability distribution:

X	0	1	2	3	4
$P(X)$	0.1	K	$2 K$	2 K	K

Determine K.

PART:C

III. Answer any TEN of the following questions:
34. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b) /|a-b|$ is even $\}$ is an equivalence relation.
35. Prove that $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$.
36. Express $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as sum of symmetric and skew-symmetric matrices.
37. Verify that if any two rows of a determinant are interchanged then the sign of determinant changes by considering $\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$.
38. If $y^{x}=x^{y}$ then find $\frac{d y}{d x}$.
39. If $x=a[4,+\sin \gamma]$ and $y=a[1-\cos \pi]]$ prove that $\frac{d y}{d x}=\tan \left(\frac{d x}{2}\right)$.
40. Verify mean value theorem if $f(x)=x^{3}-5 x^{2}-3 x \forall x \in[1,3]$
41. Find the intervals in which the f is given by $f(x)=x^{2}-4 x+6$ is (a) Strictly increasing (b) strictly decreasing.
42. Find $\int e^{x}\left[\frac{1+\sin x}{1+\cos x}\right] d x$.
43. Evaluate $\int \frac{x}{(x-1)(x-2)} d x$.
44. Evaluate $\int_{0}^{2} e^{\prime} d x$ as the limit of a sum.
45. Find the area of the region bounded by the curve, $y=x^{2}$ and the line $y=4$.
46. Form the differential equation of the family of curves $y=a e^{3 x}+b e^{-2 x}$ by eliminating arbitrary constants a and b .
47. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.
48. Prove that $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}\end{array}\right]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
49. Show that the position vector of the point P which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio $m: n$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$.
50. Find the shortest distance between the lines whose vector equations are $\vec{r}=\hat{\imath}+\hat{j}+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{k})$ and $\vec{r}=2 \hat{\imath}+\hat{\jmath}-\hat{k}+\mu(3 \hat{\imath}-5 \hat{j}+2 \hat{k})$.
51. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

> PART - D

IV. Answer any SIX of the following questions:

52. Let the function $f: R \rightarrow R$ where R is the set of real number defined by $f(x)=3-4 x$. Is f oneone and onto? Justify your answer.
53. Let $f: N \rightarrow R$ be a function defined by $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$ where S is the range of f is invertible. Find the inverse of f.
54. If $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ 6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right] B=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$ and $C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$, calculate AC, BC and $(\mathrm{A}+\mathrm{B}) \mathrm{C}$ and also verify that $(A+B) C=A C+B C$.
55. Solve the system of linear equations by using matrix method: $2 x+3 y+3 z=5$, $x-2 y+z=-4$ and $3 x-y-2 z=3$
56. If $y=3 \cos (\log x)+4 \sin (\log x)$ show that $x^{2} y_{2}+x y_{1}+y=0$.
57. If length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter and (b) the area of the rectangle.
58. Find the integral of $\int \frac{1}{\sqrt{x^{2}-a^{2}}}$ wilh respect to x and hence evaluate $\int \frac{1}{\sqrt{4 x^{2}-9}} d x$
59. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ using integration.
60. Find the general solution of the differential equation $\frac{d y}{d x}+y \sec x=\tan x, 0 \leq x \leq \frac{\pi}{2}$.
61. Derive the equation of a plane in nomal form both in the vector and Cartesian form.
62. A die is thrown 6 times. If getting an odd number is success what is the
(a) 5 success
(b) at least 5 success
(c) atmost 5 success.
63. Probebility of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both thy to solve the problem independently then find the probability that (a) the problem is solved (b) Exactly one of them solves the problem.

PART-E

V. Abswer any ONE of the following guestions:

$$
1 \times 10=10
$$

64. (a) Solve the following problem graphically. Maximize and minimize $z=10500 x+9000 y$, subject to the constraints: $x+y \leq 50,2 x+y \leq 80, x \geq 0$ $y \geq 0$.
[6M]
(b) Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-4 A+I=0$, when I is 2×2 identity matrix and 0 is 2×2 zero matrix. Using this equation, find A^{-1}.
65. (a) Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} d x$.
(b) Find K. If $f(x)=\left\{\begin{array}{l}\frac{K \cos x}{\pi-2 x} \text { if } x \neq \frac{\pi}{2} \\ 3 \quad \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$.
