SECOND PUC PREPARATORY EXAMINATION, MARCH - 2022

SUBJECT : MATHEMATICS (35)

Time : 3 Hrs. 15 Mins. Max Marks : 100
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The question paper has five parts namely A, B, C, D and E. Answer all the parts.
Use the graph sheet for the question on Linear Programming in Part-E

PART - A .
Answer any TEN questions : 10x1=10
The relation R = {(1, 2), (2, 1), (1, 3)} on the set A= {1, 2, 3} is not symmetric, why ?

The binary operation * is defined on 'Q' as a*b= % , then find 5*3. =

Write the domain of cot™ (x).

Find the value of cos (sec‘1 X +cos ec"‘x),lxl >1

Define a diagonal matrix.

If A is an invertible matrix of order 2 then find |A™|.
dy

& .

If y = tan (2x + 3), then find

If y = log (sin x), then find

dy

e

Find Icosec x (cosec x +cot x)-dx.
5

Evaluate : Ie’ -dx.

4 .

. - 12 1~ 1~

Compute the magnitude of the vector c= — i+ — j— —=k.

o BB )
Given that a-b=0 and axb =0, what can you conclude about the vectors a and b?
Find the direction cosines of y-axis.
Define objective function in a linear programming problem.

4 2
If P(A) = 7 and P(B/A) =  find P(ANB).

PART -B
Answer any TEN questions : 10x2=20

Find gof and fog, if f : R—>R and g : R—R are given by f(x) = cos x and g(x) = 3x2.

1 ) 1
Find the value of cos™ (5) +2sin™ [—2—)

Show that sin™ (2x 1-x? ) =2sin™ x, LN dxg ot
“ VR
2 -3
3 -1 3
If A= and B={1 0 | then find matrix AB.
-1 0 2 3 1

Find the area of the triangle with vertices (1, 0), (6, 0) and (4, 3), using determinants.
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F'diy- if 2 i
e ae X + 3y = sin x.

Find the derivative of cos (log x + €), x > 0 with respect to X.

Differentiate cos™ (sin x) with respect to X.

Find the approximate value of ,/25.3 by using differentials.

R

1

Integrate xTxlog—x

with respect to x.

Evaluate Ix sin x -dx
Find the order and degree of the differential equation y" + 2y" +y' = 0.

Find a vector in the direction of the vector 5i— j+ 2k , which has magnitude 8 units.

Find the projection of the vector +3j+7k on the vector 7i - j+8k-

Find the distance of the point (3, -2, 1) from the plane 2x - y + 2z + 3 = 0.
Find the vector equation of the plane which is at a distance of 7 units from the origin and normal

to the vector 3 +5j— 6k .
A random variable X has the following probabilities distribution

X |0 (1 (2 |3 |4

PX)|0.1 |k |2k|2k| k

i) determine k i) p(x = 2).

PART - C
Answer any TEN questions : 10x3=30

Show that the relation R in the set of A={x:xeZand 0<x <12} given by
R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation.

Solve tan™(2x)+tan™' (3x) = -}

For any square matrix A with real number entries, show that i) A + A' is a symmetric matrix
ii) A-A' is a skew symmetric matrix.

2 -3 35

For the determinant (6 0 4 |, verify that, if any two rows of it are interchanged then the sign
1 5 -7

of the determinant changes.

If x =a(0-sin0) and y=a(1+cos0) find gx—y

Find the derivative of the function y* = x¥ with respect to X.

Verify mean value theorem for the function f{x) = x? in the interval [2, 4].
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-3
Find the intervals in which the function f{x) = x* + 2x - 5 is

i) Strictly increasing ii) Strictly decreasing.

Evaluate dx.

J‘(x+1)(x+2)

(x=3)e"
Integrate (x _1)3 with respect to x.

x> sin (tan‘1 x")

Find j i dx

Find the area of the region bounded by x2 = 4y, y = 2, y = 4 and the Y-axis, in the first quadrant.
Form the differential equation representing the family of curves y* = a (b? - x?).

Find the general solution of sec?x tan y dx + sec? y tan x dy = 0.

Find the area of the triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices.
Prove that : [5+B b+¢ 6+5J=2[5 b 6]

Find the equation of the plane through the inersection of the planes

3x -y+2z-4=0and x +y+z-2=0 and the point (2, 2, 1).

A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of

the two bags is selected at random and a ball is drawn from the bag which is found to be red.
Find the probability that the ball is drawn from the first bag.

PART - D

Answer any SIX questions : 6x5=30
The function, f: R— R defined by f{x) = 1 + x2. Verify whether 'f' is one-one, on-to or bijective.

" Justify your answer.

Consider f: R—R given by f(x) = 4x + 3. Show that f'is invertible. Find the inverse of f.

1 2 3 3 -1 2 4 1 2
IfA=|5 0 2|, B=|4 2 5|and C={0 3 2|, then compute (A + B) and
1 -1 1 2 0 3 1 =23

(B - C). Also verify that A+ (B-C)=(A+B)-C.

Solve the following system of linear equations by matrix method :
x-y+z=4; 2x+y-3z=0; xty+z=2

If y=(tan™ x)’, then show that (x* + 1)* y, + 2x (< + 1) y, = 2.

A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground,
away from the wall at the rate of 2 cm/sec. How fast is its height on the wall decreasing, when
the foot of the ladder is 4 m away from the wall ?

1 dx
Fi int 1of T ——, with respect to x and he luate | ———.
ind the integral o F__az 4t p nce evaluate Im

2 2

) X
Find the area enclosed by the ellipse pry + o =1.
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dy
Solve : x— +y=x3
olve de y=x, x>0.

Derive the equation of the line passing through the given point and parallel to a given vector both
in Vector and Cartesian form.

Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What
is the probability that

i) all the five cards are spades.

i) none is a spade.

1 1 :
Probability of solving specific problem independently by A and B are 5 and 3 respectively. If

both try to solve the problem independently, find the probability that
1) the problem is solved.
ii) exactly one of them solves the problem.

PART - E
Answer any ONE question : 1x10=10
a) Minimise and maximise Z = -3x + 4y subject to the constraints

x+2y<8, 3x+2y<12, x>0, y=0.
kx+1, if x<n

b) Find k if = ! is continuous at X =T.
) Fn fx) {cosx, if x>nlsc

£ 1
2) Prove that L" f(x)dx = I:f(a+b —x)dx and hence find f ; 1+ Jan x dx.

2 3
b) If the matrix A =[1 2:| , satisfies the equation A? - 4A + I =0, where [ is 2x2 identity

matrix and '0' is a 2 x 2 zero matrix, then find A™.

a) Show that the right circular cylinder of given surface and maximum volume is such that its
height is equal to the diameter of the base.

1 a a®
b) Prove that I b b’|=(a-b) (b-c)(c-a)
1 ¢ ¢

sk skook ok





{"type":"Imported Other","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Imported Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Imported Other","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Imported Whiteboard","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

