SECOND PUC PREPARATORY EXAMINATION, MARCH - 2022

Time : 3 Hrs. 15 Mins.
SUBJECT : MATHEMATICS (35)
Max Marks : 100
INSTRUCTIONS :
i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
ii) Use the graph sheet for the question on Linear Programming in Part-E

PART - A

I Answer any TEN questions :

1) The relation $R=\{(1,2),(2,1),(1,3)\}$ on the set $A=\{1,2,3\}$ is not symmetric, why ?
2) The binary operation $*$ is defined on ' Q ' as $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{2}$, then find $5 * 3$.
3) Write the domain of $\cot ^{-1}(x)$.
4) Find the value of $\cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right), 1 \times 1 \geq 1$
5) Define a diagonal matrix.
6) If A is an invertible matrix of order 2 then find $\left|\mathrm{A}^{-1}\right|$.
7) If $y=\log (\sin x)$, then find $\frac{d y}{d x}$.
8) If $y=\tan (2 x+3)$, then find $\frac{d y}{d x}$.
9) Find $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) \cdot d x$.
10) Evaluate : $\int_{4}^{5} \mathrm{e}^{\mathrm{x}} \cdot \mathrm{dx}$.
11) Compute the magnitude of the vector $\overrightarrow{\mathrm{c}}=\frac{1}{\sqrt{3}} \hat{\mathrm{i}}+\frac{1}{\sqrt{3}} \hat{\mathrm{j}}-\frac{1}{\sqrt{3}} \hat{\mathrm{k}}$.
12) Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, what can you conclude about the vectors \vec{a} and \vec{b} ?
13) Find the direction cosines of y-axis.
14) Define objective function in a linear programming problem.
15) If $\mathrm{P}(\mathrm{A})=\frac{4}{5}$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{2}{5}$ find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.

PART -B

II Answer any TEN questions:
$10 \times 2=20$
16) Find gof and fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$.
17) Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$.
18) Show that $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$
19) If $A=\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & -3 \\ 1 & 0 \\ 3 & 1\end{array}\right]$ then find matrix $A B$.
20) Find the area of the triangle with vertices $(1,0),(6,0)$ and $(4,3)$, using determinants.
21) Find $\frac{d y}{d x}$, if $2 x+3 y=\sin x$.
22) Find the derivative of $\cos \left(\log x+e^{x}\right), x>0$ with respect to x.
23) Differentiate $\cos ^{-1}(\sin x)$ with respect to x.
24) Find the approximate value of $\sqrt{25 \cdot 3}$ by using differentials.
25) Find $\int\left(\sqrt{\mathrm{x}}-\frac{1}{\sqrt{\mathrm{x}}}\right)^{2} \mathrm{dx}$
26) Integrate $\frac{1}{x+x \log x}$ with respect to x.
27) Evaluate $\int x \sin x \cdot d x$
28) Find the order and degree of the differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.
29) Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude 8 units.
30) Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.
31) Find the distance of the point $(3,-2,1)$ from the plane $2 x-y+2 z+3=0$.
32) Find the vector equation of the plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.
33) A random variable X has the following probabilities distribution

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.1	k	2 k	2 k	k

i) determine k
ii) $\mathrm{p}(\mathrm{x}=2)$.

PART - C

III Answer any TEN questions :

$10 \times 3=30$
34) Show that the relation R in the set of $A=\{x: x \in Z$ and $0 \leq x \leq 12\}$ given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.
35) Solve $\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}$.
36) For any square matrix A with real number entries, show that $i) A+A^{\prime}$ is a symmetric matrix ii) $\mathrm{A}-\mathrm{A}^{\prime}$ is a skew symmetric matrix.
37) For the determinant $\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$, verify that, if any two rows of it are interchanged then the sign of the determinant changes.
38) If $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$ find $\frac{d y}{d x}$.
39) Find the derivative of the function $y^{x}=x^{y}$ with respect to x.
40) Verify mean value theorem for the function $f(x)=x^{2}$ in the interval $[2,4]$.
41) Find the intervals in which the function $f(x)=x^{2}+2 x-5$ is
i) Strictly increasing
ii) Strictly decreasing.
42) Evaluate $\int \frac{x}{(x+1)(x+2)} d x$.
43) Integrate $\frac{(x-3) e^{x}}{(x-1)^{3}}$ with respect to x.
44) Find $\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$
45) Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the Y-axis, in the first quadrant.
46) Form the differential equation representing the family of curves $y^{2}=a\left(b^{2}-x^{2}\right)$.
47) Find the general solution of $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$.
48) Find the area of the triangle having the points $\mathrm{A}(1,1,1), \mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$ as its vertices.
49) Prove that : $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}\end{array}\right]=2\left[\begin{array}{ll}\vec{a} \vec{b} & \vec{c}\end{array}\right]$
50) Find the equation of the plane through the inersection of the planes
$3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
51) A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

PART - D

IV Answer any SIX questions :
$6 \times 5=30$
52) The function, $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$. Verify whether ' f ' is one-one, on-to or bijective. Justify your answer.
53) Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.
54) If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$, then compute $(A+B)$ and $(B-C)$. Also verify that $A+(B-C)=(A+B)-C$.
55) Solve the following system of linear equations by matrix method:
$\mathrm{x}-\mathrm{y}+\mathrm{z}=4 ; \quad 2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=0 ; \quad \mathrm{x}+\mathrm{y}+\mathrm{z}=2$.
56) If $y=\left(\tan ^{-1} x\right)^{2}$, then show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$.
57) A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. How fast is its height on the wall decreasing, when the foot of the ladder is 4 m away from the wall?
58) Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to x and hence evaluate $\int \frac{d x}{\sqrt{2 x-x^{2}}}$.
59) Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
60) Solve : $x \frac{d y}{d x}+y=x^{3}, x>0$.
61) Derive the equation of the line passing through the given point and parallel to a given vector both in Vector and Cartesian form.
62) Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
i) all the five cards are spades.
ii) none is a spade.
63) Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that
i) the problem is solved.
ii) exactly one of them solves the problem.

PART - E

V Answer any ONE question :
64) a) Minimise and maximise $Z=-3 x+4 y$ subject to the constraints

$$
x+2 y \leq 8, \quad 3 x+2 y \leq 12, \quad x \geq 0, \quad y \geq 0
$$

b) Find k if $f(x)=\left\{\begin{array}{ll}k x+1, & \text { if } x \leq \pi \\ \cos x, & \text { if } x>\pi\end{array}\right.$ is continuous at $x=\pi$.
65) a) Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence find $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} \cdot d x$.
b) If the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, satisfies the equation $A^{2}-4 A+I=0$, where I is 2×2 identity matrix and ' 0 ' is a 2×2 zero matrix, then find A^{-1}.
66) a) Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.
b) Prove that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$

